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Coupled Processes and In Situ
Stabilization

 |n situ stabilization results from a transient
perturbation of the biogeochemical environment
— Application of treatment
— Remobilization of contaminants from less stable form
— Sequestration in more stable form

« Stabilization must persist for decades to
centuries after active treatment ends

— Biogeochemical environment will reverts to pre-
treatment background conditions

— Coupling between the rates of local biogeochemical
processes and the global fluxes
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Proposed Stabilization Strategy

« Manipulate the kinetics of calcite precipitation in
an aquifer in order to increase the rate of
coprecipitation of divalent metals (eg. 29Sr*2*,
60Co2*, Pb2%*, Cd?*) from the aqueous phase.

(1-x)Ca%* + yMe?* + 2HCO; - Ca_,,Me CO; + CO, + H,0

Co-precipitation of metals in calcite at arid
western sites is compatible with the long term

subsurface biogeochemistry

| Unversiyoidaho % Lol



Divalent Metals and Radionuclides are
Common at DOE sites
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90Strontium Contamination

INEEL groundwater, perched
water (INTEC)

« Upto84 pCiL1ina1.6 km?
groundwater plume

 Up to 320,000 pCi L1 in
perched water

Hanford soils, groundwater
(100N)

« Estin-ground inventory of
75 to 89 Ci

 Groundwater levels up to
6000 pCi L1

EPA Regulatory Limits for °°Sr in drinking
water: 8 pCi L

- Universityotidaho
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Contaminant inventories are
largely associated with the
solid media, not the water
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In Situ
(NH,),CO + 3H,0 Stabilization Concept

pH
I (1-x)Ca?* + xSr** + HCO;

ONH,* + HCO, + OH-




Results to Date (1)

Urea Hydrolysis Rates UP-1

Injected 387 gal of Injected 164.8
gal of 48mM

0.00Q75% molasss
10000 - X UreaX
1000 -

Injected 161.1 gal of
0.00075% molasses
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« Demonstrated in laboratory and field the linkage
between urea hydrolysis and calcite
preC|p|tat|on
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Results to Date (2)

0.4

@ B. pasteurii + urea
B (NH4)2CO3
00 A B. pasteurii + (NH4)2CO3
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In [Ca*"]/[Ca*],
* Observed that Sr is incorporated into calcite

precipitated by urea hydrolyzers, with higher
distribution coefficient than in abiotic systems
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Snake River Plain Model Aquifer System

mg L™ mg L
Ca”’ 70.1] [Na” 25.8
Mg 10.9| K 4.0
HCO;  69.8| |CI 124
NO; 52| 1S0.5 430
oH 8.15| |'CEC 15
T (°C) 14| |°Kds, 5.0
(meq100g™) *(mLg™)

6.67 liter total volume (15%
porosity)

1 liter (1 kg) of water

5.67 liter (15.3 kg) of
geomedia (CEC only reactivity)

2.70 kg liter? (grain density)
2.29 kg liter? (bulk density)

React 2 mmoles aqueous urea
Kinetics

— 1storder for urea hydrolysis

— 2nd order chemical affinity for
calcite precipitation

Geochemist’'s Workbench
simulations
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Kinetic Model
Urea Hydrolysis

H,NCONH, + 3H,0 — 2NH,* + CO,2 + OH-

SRPA Isolates (22°C
d [ured ]omz _ urea]  °2 (22°C)
urea 9 - .
dt 8.8 -
8.6 -
dEVH: :L l T 84 -
“ =2k  |urea] 0.2 ~
a 7.8
2" 76 | |
d|:cj03 1l‘al _ k [u]/'ea] 0 0 0 .
dt - urea e (days)
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Kinetic Model

Calcite Precipitation

CaCO, — Ca2* + CO,*

d[C‘Cl lcite] NETPATH model of
_ McLing (1994) suggests
kcalcite (S - 1)2

At - that ~0.3 mmole (net) of
calcite precipitate per liter
Q ac . aCOZ‘ of groundwater as it
S===_"" 3 travels across the INEEL
K K site (~50 years)
eq
S>22
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Batch System Calculations
(No Transport)

N

(&)
\
I
@
@)

RN
\

(63}
\
pd
T

Some fluid components (mmoles

8.2 | | | | | | | | | |

o
O

0 100 200 300 400 500
Time (days) Time (days)

100 200 300 400 500

« pHand HCO; initially rises due to urea hydrolysis, then decrease as
calcite precipitates.

« Ca?*initially rises due to exchange with NH,*, then decrease as
calcite precipitates.
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Batch System Calculations
(No Transport)

K):
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Hydrolysis of 2 mmol urea results in precipitation of almost 2 mmole
of calcite.

Q/K rises rapidly as urea hydrolyzes faster than calcite precipitates,
Q/K falls as the two rates become equivalent.
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Reactive Transport
(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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High pH moves through system. Near ambient pH values return in

less than 18 months

High [Ca?*] moves through system in early times as NH,*
exchanges for Ca?*. During later times low [Ca?*] moves through

system as Ca?* exchanges for NH,*
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Calcite

(umoles/cm3 )

Reactive Transport
(6 month injection, 1-D, 730 m, 1 pore volume year-1)
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« Calcite precipitates through the entire regions and is essentially

Q/K is elevated (> 30) during early times and slightly depressed (but
> 1) during later times. This condition persists until NH,* is swept

from the system (decades).
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Summary of Results

* Urea hydrolysis can be used to manipulate
in situ biogeochemistry and facilitate calcite
precipitation

 Process optimization is a trade off between
rapidly precipitating calcite (high urea
injection concentrations) and long-term
calcite stability (low urea injection
concentration)
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Couple Process
Modeling Implications

Results from batch and advective simulation
differ

Calcite precipitation and biomass development
can influence flow field (lIs this predicable?)

Over long time frames process other than cation
exchange may become important (e.g., rock
weathering?)

Over long time frames ammonium oxidation may
be important (e.g. controlled by O, flux?)
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Coupled Processes
Experimental Implications

* Field demonstrations are important, but not a
good place to develop fundamental
understanding.

— Expensive

— In situ monitoring of chemical parameters is limited
— Hard to control

— Impractical to replicate

* Well-controlled and monitored couple process
experiments needed to parameterize models
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